Extractables & Leachables Virtual Summit 2020
Ensuring Quality, Safety, Suitability and Regulatory Compliance for Drugs, Biologics and Medical Devices
July 30–31, 2020, Online EDT

Featuring Lessons Learned and Case Studies from Industry Experts:

- CDRH Scientific Perspective on Chemical Analysis for Medical Devices
- ISO 10993-18: Key Concepts and Practices for Effective and Compliant Chemical Characterization Supporting the Biological Evaluation of Medical Devices
- Understanding the Major Revisions to ISO 10993 and the New European Medical Device Regulations
- Case Study: Medical Device Toxicological Risk Assessment Following New Principles of ISO 10993-17
- Identification and Evaluation of Material Quality Attributes (MQA) of Polymerics Used in Cell Therapy Products Manufacturing
- Chemical Interactions between Leachables and Biopharmaceuticals
- The Need to Identify Unknowns from a Toxicological Perspective
- BPOG E&L for Single-Use Systems – The Final Chapter
- Utilizing BPOG data for selection and qualification of Single Use Systems
- Extractables/Leachables Studies: Are You Certain About that Uncertainty?
- Reducing Response Factor (RF) Variation and the need for Uncertainty Factors (UFs) in Extractables and Leachables Analysis
- Comparison of the Solubilization Properties of Polysorbate 80 and Isopropanol/Water Solvent Systems for Organic Compounds Extracted from Three Pharmaceutical Packaging Configurations
- Comprehensive Extractables Study of Autoclavable Polyethersulfone Filter Cartridges
- Physics-based Model to Predict Patient Exposure to Polymer Additives in Medical Device Materials
- And Much More!

With Representation From:

- Mike Eakins
- David Saylor
- Ted Heise
- Ping Wang
- Berk Oktem
- Dennis Jenke
- Sherry Parker
- Lisa Olson
- Ron Brown
- Charles Felice
- Mike Roberto
- James Hathcock
- Cherry Shih
- Mark Jordi
- Piet Christiaens
- Steve Zdravkovic
- Eric Hill
- Stephen Doherty
- Daniel Norwood
- Michelle Kolodziejski
- Mike Ruberto
- Pall Biotech
- Pall Life Sciences
- Jordan Jordan
- Nelson Labs
- PPD
- Boston Analytical
- Toxikon
- Pall Biotech
- Pall Life Sciences
- Jordan Jordan
- Nelson Labs
- PPD
- Boston Analytical
- Toxikon

With Comprehensive Coverage On:

- CDRH Scientific Perspective on Chemical Analysis for Medical Devices
- ISO 10993-18: Key Concepts and Practices for Effective and Compliant Chemical Characterization Supporting the Biological Evaluation of Medical Devices
- Understanding the Major Revisions to ISO 10993 and the New European Medical Device Regulations
- Case Study: Medical Device Toxicological Risk Assessment Following New Principles of ISO 10993-17
- Identification and Evaluation of Material Quality Attributes (MQA) of Polymerics Used in Cell Therapy Products Manufacturing
- Chemical Interactions between Leachables and Biopharmaceuticals
- The Need to Identify Unknowns from a Toxicological Perspective
- BPOG E&L for Single-Use Systems – The Final Chapter
- Utilizing BPOG data for selection and qualification of Single Use Systems
- Extractables/Leachables Studies: Are You Certain About that Uncertainty?
- Reducing Response Factor (RF) Variation and the need for Uncertainty Factors (UFs) in Extractables and Leachables Analysis
- Comparison of the Solubilization Properties of Polysorbate 80 and Isopropanol/Water Solvent Systems for Organic Compounds Extracted from Three Pharmaceutical Packaging Configurations
- Comprehensive Extractables Study of Autoclavable Polyethersulfone Filter Cartridges
- Physics-based Model to Predict Patient Exposure to Polymer Additives in Medical Device Materials
- And Much More!
Pharma Ed’s Extractables and Leachables Virtual Summit 2020 Sponsored by:

- EKG Labs
- VR Analytical
- Boston Analytical
- Toxikon
- Smithers
- SGS
- Aspen Research
- Qualimetrix
- TRIAD
- Material Needs Consulting
- Drug Development & Delivery
- EuTech Scientific Services, Inc.
- WuXi AppTec
- SafeBridge Consultants, Inc.
- Jordan Labs
- APS
- Eurofins
- Nelson Labs

Register Now to Guarantee Your Space! Online: www.pharmaedresources.com • Phone: 217.721.5774
Thursday, July 30, 2020, Eastern Daylight Time

8:00 Chairperson’s Welcome & Opening Remarks
Michael Eakins, Owner, Eakins & Associates

8:10 Regualtory Spotlight – Chemical Analysis for Medical Devices
Berk Oktem, Chemist, FDA
Abstract Coming Soon

Critical Issues – Identifying Unknowns in E/L Studies

8:50 The Need to Identify Unknowns from a Toxicological Perspective
Ron Brown, Toxicologist FDA (retired)

When conducting a toxicological risk assessment of extractable and leachable (E&L) compounds, it is typically assumed by the toxicologist that the extracted compounds have been identified with a high degree of certainty. However, because of analytical chemistry challenges, identification of the compounds to this level of certainty is not always possible, especially for non-targeted extractables. This talk will explore the implications of conducting a toxicological risk assessment of compounds that have been only tentatively identified and will evaluate recent proposals to evaluate the safety of unidentified and partially identified E&L compounds. Among the strategies to be addressed in this presentation are the appropriate use of Threshold of Toxicological Concern (TTC) values to serve as default TI or PDE values for compounds that have not been confidently identified and need to identify when a compound is expected to be found in an extract based on knowledge of the composition of the polymeric materials of construction of the device or pharmaceutical packaging.

9:30 Morning Break & Sponsor Presentations

9:55 Extractables/Leachables Studies: Are You Certain About that Uncertainty?
Dennis Jenke, President, Triad Scientific Solutions

There are many well-established and well-articulated expectations for extractables profiles including that all extractables above the AET be discovered, correctly identified and accurately quantified. A fundamental expectation that has rarely been articulated until recently is that the extractables profile be reproducible. That is to say that if a test article were provided to several expert testing laboratories, the extractables profiles reported by those laboratories would be similar, if not equivalent, in their important details, including the number of extractables reported and the identities and concentrations of the reported extractables.

Recent, largely anecdotal, evidence suggests that this expectation of reproducibility could be more a wish than a reality and that extractables profiles can vary, in some cases quite substantially, from lab to lab and possibility even within a lab. If this lack of consistency is true and real, it could have a significant bearing on, for example, the use of chemical characterization in the biocompatibility assessment of medical devices.

In this presentation we will examine the published and available literature and data that is relevant to this topic to establish whether the perception is reality and, if so, to consider actions that either amplify or reduce/control variation. Furthermore, the available literature and data will be used to quantify reasonable expectations for reproducibility.

10:35 ICH Q3E: A Brief Overview
Carsten Worsøe, Principal Scientist, Novo Nordisk A/S

The International Committee for Harmonisation (ICH) has approved the procurement of an ICH E&L guide-line. Although it is very early in the ICH process this short presentation will give background and history for the topic approval in ICH as well as the currently known process for the ICH guideline.

10:45 E&L Regulatory Panel Discussion
Moderator: Michael Eakins, Owner, Eakins & Associates

Panel:
- Dennis Jenke, Triad Scientific Solutions
- Ronald Brown, Toxicologist, FDA (retired)
- Berk Oktem, Chemist, FDA

Discussants: The Audience

11:20 Reducing Response Factor (RF) Variation and the need for Uncertainty Factors (UFs) in Extractables and Leachables Analysis
Dr. Mark Jordi, President, Jordi Labs

Chemical characterization per ISO 10993 has become an important component of biocompatibility testing of medical devices. Similarly, pharmaceutical packaging is characterized for extractables and leachables to verify the safety of drug products per USP <1663> and <1664>. A major concern regarding the accuracy of extractables and leachables studies is quantitative error due to response fac-
Identify the Evaluation of Material Quality Attributes (MQAs) of Polymeric Used in Cell Therapy Products Manufacturing

Ping Wang, Director, Johnson & Johnson, and Charles Felice, Principal Scientist, Janssen R&D

Cell therapy drug products such as CAR-T present unique challenges with respect to polymeric material risks compared with more common biologic processes. The manufacturing process of cell products has fewer purification steps, resulting in fewer opportunities to remove polymeric-related impurities such as particles, endotoxins, bioburden, and leachables & extractables. These attributes are material quality attributes (MQAs) that must be assessed and, if the risk is high, mitigated. This presentation will discuss the correlation of manufacturing processes and MQAs, and how these processes will impact the risk levels of the MQAs to the final drug product quality and patient safety. The MQA risk levels of the polymeric at each step will be discussed.

Research Spotlight – Single Use Systems & BPOG

BPO E/L for Single Use Systems – The Final Chapter

James Hathcock, Senior Director, Regulatory and Validation Consulting, Pall Biotech; Carsten Worsøe, Principal Scientist, Novo Nordisk A/S

In this presentation, we will cover the following topics:
• Supplier and end-user collaboration
• Extractables ecosystem
• Data review process
• Extractables protocol update
• Community of practice

Case Studies – Utilizing BPOG data for selection and qualification of Single Use Systems

Utilizing BPOG Data for Selection and Qualification of Single Use Systems

Cherry Shih, Senior Scientist, Pall Life Sciences

The increasing availability of extractable datasets aligned to standardized protocols (BPOG and USP <665>/<1665>) has led to a deeper understanding of extractable profiles in different solvents. We will share cases where specific solvent profiles from BPOG or USP <665> can be leveraged to best support and simplify the risk assessment process, for both, the purpose of initial materials selection as well as qualification of a multicomponent single use system in a defined manufacturing process. In applying standardized datasets, we share examples of how extractables profiles performed at different surface area to volume ratios (0.4 to 18 sq.cm./mL) compare to theoretically scaled values based on surface area and volume alone. The goal of these case studies is to simplify and strengthen approaches to qualification of single use materials.
that the traditional E/L approach for container/closure systems may not always be adequate in predicting leachables could chemically modify proteins, potentially causing immunogenicity through the formation of “anti-drug-antibodies.”

The FDA Guidance for Industry: “Immunogenicity Assessment for Therapeutic Proteins” (2014) describes anaphylaxis, cytokine release syndrome, infusion reactions, non-acute reactions and cross-reactivity to endogenous proteins as the associated safety concerns when considering immunogenicity as a result of chemical interaction between leachables and proteins.

The presentation will address two ways of predicting if any of the chemical compounds, found in the extraction profile of container/closure component, could lead to a chemical interaction if any of those extractables would become a leachable: (1) how to perform an in-silico reactivity approach of a very broad set of commonly known extractable compounds and (2) a chemical reactivity test to actually screen for residual chemical reactivity.

In addition, a chemical reaction model, based on Insulin as a marker compound was developed to actually verify the in-silico predicted chemical reactivity and compare the outcome of the in-silico exercise with the observed reactivity between a predefined set of extractables and insulin.

Standard Methods for Extractables/Leachables Profiling: What are the Implications?

Daniel Norwood, Principal Consultant, Feinberg Norwood & Associates

Modern analytical chemistry, in the form of GC/MS and LC/MS, has been at center stage in extractable/leachable assessment since the late 1980s. Various organizations (PQRI, USP, etc.) have attempted to establish the basic scientific principles for accomplishing extractable/leachable assessments along with the use of these highly sensitive and selective analytical techniques. Over the last ten years or so, a general consensus has been established regarding the suite of analytical techniques applied to any assessment based on the volatility and chemical nature of the anticipated analytes. This consensus includes: Head-space (HS) GC/MS for volatile analytes, Direct injection (DI) GC/MS for semi-volatile analytes contained in solvent extracts, Direct injection LC/MS for non-volatile analytes contained in solvent extracts, and ICP/MS for elemental analytes. The consensus does not include all of the details of the analytical methods since the organizations that agreed on best practices did not want to be prescriptive. This presentation will attempt to discuss the possibility of establishing standard methods for extractables/leachables. It will describe the requirements for standard methods along with the implications for the pharmaceutical industry of the implementation of standard methods. The experience of the environmental industry with standard methods in the 1970s and 1980s will be considered.

End of Day One
Topics to be covered will include:

- Navigating the flow chart, including factors that can help determine whether compositional information may be adequate for chemical characterization, or analytical testing of extracts is likely to be necessary;
- Considerations for determining extraction conditions; namely, solvent selection, temperature, duration, and nature of extraction (e.g., simulated use, exaggerated, or exhaustive);
- Distinctions between extractables and leachables in the application of established E&L principles to medical devices;
- Approaches to performing an exhaustive extraction, as well as discussion of how multiple steps can facilitate use of practical safety thresholds;
- Qualification of analytical methods, including discussion of parameters that may be candidates for use; and,
- Additional insights drawn from regulator input during numerous discussions of various elements of the standard.

Case Study: Medical Device Toxicological Risk Assessment Following New Principles of ISO 10993-17
Sherry Parker, Senior Director of Regulatory Toxicology, WuXi AppTec

ISO 10993-17, which was last revised in 2002, has undergone a significant revision and the proposed title is “Toxicological Risk Assessment of Medical Device Constituents”. The revised standard will expand from current guidance on establishing allowable limits of leachable substances, to conducting a toxicological risk assessment of medical device constituents. Proposed updates to the standard and its current status will be presented. Topics will include hazard identification, exposure assessment, dose-response assessment, and risk characterization. There will be emphasis on the use of expert judgement to determine whether the toxicological risks of exposure to extractable or leachable chemicals in medical devices are acceptable, what additional steps may be taken to mitigate risk, including whether exposure estimates could be further refined through additional chemical characterization and when to recommend risk control. In addition, the technical specification ISO/TS 21726:2019, Application of the Threshold of Toxicological Concern (TTC) for Assessing Biocompatibility of Medical Device Constituents, will be discussed. A case study will be presented to provide examples to demonstrate the application of the new principles proposed in ISO 10993-17 and ISO/TS 21726 to the toxicological risk assessment of medical devices.

Q&A: Ask the Experts

10:40 ISO 10993 Panel Discussion
Moderator: Michael Eakins, Eakins & Associates
Panel:
 - Dennis Jenke, Triad Scientific Solutions
 - Ted Heise, MED Institute
 - Sherry Parker, WuXi AppTec

Discussants: The Audience

11:15 Commercial Implications of a Properly Planned Biological Evaluation Strategy, Including the Use of Chemical Characterization
Lisa Olson, Vice President — North American Laboratory and Global Analytical Services, NAMSA

Since 2009, the emphasis on a risk management process and characterization of materials continues to shift the biological safety paradigm. Put simply, the days of medical product manufacturers simply contracting with a testing laboratory to perform a handful of biological safety tests is no longer an accepted practice by any global regulatory body. Medical device regulators are requiring carefully planned evaluation strategies based on risk and empirical data.

Join this session to learn how a well-planned strategy utilizing chemical characterization can have favorable and even cost saving implications for the commercialization of your product. This session will be a start to finish, step by step instruction on when to start your planning, what steps to follow to execute chemical characterization testing and/or biological testing, and how to keep your timelines as short or shorter than when performing conventional biological testing.

11:55 Lunch Hour. Visit the Networking Chatroom

12:55 Physics-based Models to Predict Patient Exposure to Medical Device Leachables
David Saylor, Materials Scientist, FDA

The materials that comprise medical devices contain substances that can be transferred to patients. Patient exposure to these substances may be desirable, e.g. drug delivery, but more generally, there is concern for adverse effects if a chemical is released in sufficient quantities. Historically, the likelihood for adverse effects has been evaluated using animal testing. Toxicological risk assessment (TRA) is an alternative approach that can obviate the need for extensive animal testing. TRA relies on exposure estimation, yet exposure data are challenging to obtain and interpret. Physics-based mass transport models provide a promising alternative to establish clinically relevant exposure estimates. This presentation will provide an overview of exposure models and their use in
biological risk evaluation of medical devices, including: potential benefits and current use in regulatory applications, types of models that can inform TRAs, challenges with use in regulatory decision making, and strategies to overcome these challenges.

1:40 Managing the Risk of Leachables through Proactive Material Selection and
Michael Ruberto, President, Material Needs Consulting
Abstract coming soon

Afternoon Break & Sponsor Presentations

Extractables Screening of Single Use Components for Qualification
Eric J. Hill, Director, Boston Analytical

Single Use Systems (SUS) present challenges with regards to extractables and leachables, however their ease of use, quick change out capability, cost, and configurational flexibility provide significant advantages over traditional manufacturing set-ups. With these challenges regarding E&L, much attention has been paid to extractables data generation for use in vendor and material selection. Ongoing discussions in the industry revolve around the BioPhorum Operations Group (BPOG) Standardized Extractables Testing Protocol for Single-Use Systems in Biomanufacturing and the proposed USP <665> monograph for single use systems. Regardless of how these discussions resolve amongst the industry, after an SUS is selected there is still testing that must be performed. The data generated during selection is often not robust enough for qualification of the SUS materials for use in the manufacturing setting. It is critical to perform extractables testing of the SUS for material compatibility using the manufacturing conditions of use, including time and temperature. This extractables testing also should be performed using the actual solutions contacting each SUS material. Case study examples of extractables testing for material compatibility and qualification will be presented.

Comparison of the Solubilization Properties of Polysorbate 80 and Isopropanol/Water Solvent Systems for Organic Compounds Extracted from Three Pharmaceutical Packaging Configurations
Steve Zdravkovic, Senior Research Scientist, PPD

It has been reported that the presence of polysorbate 80 in a pharmaceutical product’s formulation may increase the number and/or amount of impurities leached from materials used during its manufacture, storage, and/or administration. However, it is uncertain if/how the solubilization properties of this surfactant compare to non-surfactant solvent systems. The goal of this study is to provide insight into this area of uncertainty by comparing the solubilization properties of polysorbate 80 to those of isopropanol/water solutions while in contact with a plasticized polyvinylchloride parenteral delivery bag, a single-use type manufacturing bag, and a polypropylene bottle. These properties were determined via a binding experiment, in which a set of model compounds was introduced into the solutions, and via an extraction experiment, in which compounds were extracted from the packaging material by the solutions. In both experiments, the amount of each compound present at equilibrium was assayed to determine the extent they were solubilized by the solution from the packaging material. Results from these experiments illustrate differences in the magnitude of solubilization obtained from solutions containing polysorbate 80 as compared to those composed of isopropanol/water. However, it was also demonstrated that their solubilization properties can be linked via a mathematical model.

Challenges of Assessing Breathing Gas Pathways per ISO 18562
Michelle Kolodziejski, Principal Chemist, Eurofins BioPharma Product Testing

Medical devices such as nebulizers, CPAP equipment, respirators, and the associated disposable accessories can release harmful substances into the breathing gas stream. For example, a range of volatile organic compounds may be released, including but not limited to: siloxanes, phthalates, phenols, acrylates, alkanes, ketones, and alcohols. To ensure patient safety, the ISO 18562 guidance for the evaluation of breathing gas pathways was introduced in 2017. Part 3 of the standard focuses on VOCs, although it does not provide specifics for the analytical considerations related to sampling and analysis. Therefore, laboratories must determine appropriate equipment and develop procedures relevant to the testing, paying attention to the following considerations: sample collection, flow control valve selection, tubing type, fittings, gas type, temperature control, flow rates, and sample dilution factors. ISO 18562-3 recommends flow rates for different patient populations, while also recognizing actual flow rates of use. This presentation will begin with an overview of the ISO 18562 set of standards followed by a discussion of the considerations/difficulties of performing the VOCs testing. A case study for a cPAP device component will be used to evaluate the release profiles of VOCs over time at adult and infant flow rates.

Close of Program
In the Age of COVID, the Show Must Go Online

In response to overwhelming audience and speaker feedback, and in view of the current health and safety concerns involving the novel coronavirus COVID-19, we’re taking our events online (at least for the foreseeable future; we do hope to see you again soon in person when all this is over!) Extractables & Leachables Virtual Summit 2020 is an entirely online event, complete with insightful presentations from leading researchers, 1:1 networking opportunities, live question & answer sessions, and sponsored informational presentations that highlight how vendors are tackling some of the key issues facing extractables & leachables testing. Just sit back and enjoy this online learning experience from the safety and comfort of your home or office. Missed a session or two? No worries—the full program will be archived and available for post-conference viewing and download.

In the Age of COVID, the Show Must Go Online

In response to overwhelming audience and speaker feedback, and in view of the current health and safety concerns involving the novel coronavirus COVID-19, we’re taking our events online (at least for the foreseeable future; we do hope to see you again soon in person when all this is over!) Extractables & Leachables Virtual Summit 2020 is an entirely online event, complete with insightful presentations from leading researchers, 1:1 networking opportunities, live question & answer sessions, and sponsored informational presentations that highlight how vendors are tackling some of the key issues facing extractables & leachables testing. Just sit back and enjoy this online learning experience from the safety and comfort of your home or office. Missed a session or two? No worries—the full program will be archived and available for post-conference viewing and download.

Register for the conference using one of three options:
Online: www.pharmaedresources.com Phone: (217) 721-5774
Mail: 2810 Robeson Park Drive, Champaign, IL 61822

Please Complete the Following

FIRST NAME: __________________________
LAST NAME: __________________________
TITLE: ________________________________
COMPANY: ___________________________
ADDRESS: ____________________________
ADDRESS: ____________________________
CITY: __________________ STATE: ________
ZIP: ________ COUNTRY CODE: __________
OFFICE PHONE: _______________________
MOBILE PHONE: ______________________
FAX: __________________________________
E-MAIL: ______________________________

Please register me for:
Extractables & Leachables Summit 2020

| Standard Registration: | $1,495 |
| Early Bird Registration (by January 21st): | $1,395 |

Call for government, academic, or non-profit rate

PAYMENT METHOD

CREDIT CARD REGISTRATION:

☐ CREDIT CARD ☐ VISA ☐ MASTERCARD ☐ AMEX
NAME: _________________________________
CARD #: _______________________________
EXPIRATION: _____ / _____
SIGNATURE: ___________________________
BILLING ADDRESS: _____________________

CHECK REGISTRATION:
To pay by check, please provide a purchase order below. Please note that all payments must be received five (5) days prior to the conference to ensure space. Attendees will not be admitted to the conference without full payment.
PURCHASE ORDER #:

PLEASE NOTE:
PharmaEd Resources does not offer refunds. However, if you cannot attend after registering, we are happy to apply your registration fee to another PharmaEd Resources event, or transfer your registration to a colleague. Notice of cancellation must be received at least 5 days prior to the event.