Transdermal Drug Delivery Systems

Examine Recent Developments in Transdermal Drug Delivery

FEBRUARY 24-25, 2011, RADISSON WARWICK HOTEL, PHILADELPHIA, PA

Key Learning Objectives:

• Practical Considerations for Expanding the Range of Drugs and Vaccines for Delivery Using Transdermal Systems
• Explore Transdermal Drug Delivery Systems as a Viable Alternative to Oral, Intra-Muscular or Intra-venous Injection
• Understand How FDA Regulates Transdermal Drug Delivery Technologies for Investigational and Marketed Products
• Explore Novel Applications of Transdermal Drug Delivery Technologies
• Overcome Obstacles and Achieve Efficacy in Active Transdermal Delivery Platforms
• Cost Considerations in the Development and Production of Transdermal Delivery Systems
• Understand Therapeutic Advantages for Transdermal Delivery of Biopharmaceutical and Vaccines
• Learn How New Technologies are Expanding the Scope of Transdermal Delivery to Include Hydrophilic Macromolecules

Featuring Representation From:

Eakins and Associates, Inc.
BD Technologies
University of Mississippi
Xel Pharmaceuticals, Inc.
AllTranz Inc.
PATH

Biologics Consulting Group
3M Drug Delivery Systems
American Association of Pharmaceutical Scientists
University of Kentucky College of Pharmacy
Polytherapeutics, Inc.

PharmaEd Resources, Inc. • 2810 Robeson Park Drive • Champaign, IL 61822
tel. 217.355.7322 • fax. 847.589.0708 • web. www.pharmaedresources.com
Vaccines can be delivered more efficaciously; protein- and peptide-based drugs may be absorbed more readily resulting in faster or more complete pharmacodynamics. Across the field, delivery systems have been developed and optimized for delivery of relatively small amounts of highly potent compounds and larger volumes of biopharmaceutical formulations. Different transdermal technologies offer opportunities for extended release of peptides, highly efficacious delivery of vaccines, and, in some cases, administration of liquid formulations at higher bioavailability than can be achieved by injection. These therapeutic benefits may be achieved while still preserving the key elements of patient satisfaction associated with transdermal delivery: comfort, convenience and needle-free.

1:45 Passive Transdermal Drug Delivery Systems: Challenges and Potential
Dr. Danyi Quan, Xel Pharmaceuticals, Inc.
Passive transdermal drug delivery systems (TDDS) have been used for decades to successfully deliver small molecule drugs (< 500 Da), which include matrix systems...
Soluble microneedles made of maltose as well as metal microneedles to demonstrate delivery of human growth hormone and larger proteins like antibodies or even micron sized particulates. Iontophoresis involves the application of small amounts of physiologically acceptable currents to drive ionic drugs into the skin. We have demonstrated iontophoretic delivery of several drug molecules including peptides such as calcitonin. We have also used a combination of iontophoresis and microneedles to show that charged drug molecules can be propelled via microchannels created in the skin by microneedles to achieve delivery flux higher than that could be achieved by either technique alone.

- Learn how new technologies are expanding the scope of transdermal delivery to include hydrophilic macromolecules
- Learn the success and failures of iontophoretic delivery systems developed and marketed over the years
- Learn about the recent excitement and activity centered around bringing a microneedle patch to the market

4:15 Pore Lifetime And Formulation Aspects In Microneedle-Assisted Delivery
M. Milewski, N.K. Brogden, S.L. Banks, and A.L. Stinchcomb, University of Kentucky College of Pharmacy & AllTranz Inc.

Transdermal microneedle systems have become a very popular means of delivering skin impermeable drugs through the stratum corneum at therapeutic rates. Most of the previous research on microneedle systems has focused on optimization of the microneedle geometry. Our approach to microneedle-assisted delivery research has been in the following four areas, which will be presented:

1. Investigation of prodrugs and salt forms with optimal physicochemical properties for drug flux after microneedle treatment
2. Investigation of viscosity and other formulation factors that influence drug flux after microneedle treatment
3. Investigation of micropore lifetime using transepidermal water loss (TEWL), impedance spectroscopy, and pharmacokinetic analysis
4. Investigation of micropore lifetime after treatment with COX inhibitors

4:45 Panel Discussion
Friday, February 25, 2011

Patchless Transdermal Drug Delivery
Dr. Kishore Shah, President and Founder, Polytherapeutics, Inc.

The advent of transdermal drug delivery, as we know it today, can be traced to FDA approval and commercialization of scopolamine (1979) and nitroglycerine (1981) patches. Since then more than a couple of dozen transdermal products have been marketed worldwide and transdermals have become a multi-billion dollar industry. Some of the advantages of transdermal drug delivery include (i) reproducible and prolonged drug delivery rate, (ii) elimination of hepatic “first pass” metabolism, (iii) minimization of undesirable side effects, (iv) patient convenience/compliance, and (v) rapid termination of drug therapy when desired. In spite of these advantages of transdermal medication, only a small percentage of drugs can be delivered transdermally due to essentially two limitations: barrier function of skin and its irritation and sensitization by many drugs. Patchless transdermal drug delivery in the form of topically applied gel, cream, lotion, or solution can to some extent overcome the limitation of skin barrier by application of the drug formulation to a much larger area of skin than would be possible with plastic patches. The patchless delivery may be suitable for treatment of various indications such as pain, hormone replacement therapy, contraception, over active bladder, CNS disorders, male or female sexual dysfunction, and smoking cessation.

Key advantages of patchless transdermal products include:

- Potential for expanding the scope of transdermal delivery to drugs requiring significantly higher dosages than permissible with patches
- Flexibility of dosing
- Lack of occlusion may reduce skin irritation potential of the drug
- Ease of manufacture
- Cost effective
- Cosmetic elegance

The deficiencies of the patchless transdermal delivery are (i) some variability in precision of dosing as compared to patches, and (ii) not suitable for drugs having very high skin permeation rates (e.g. fentanyl and clonidine) and/or a narrow therapeutic window.

Important formulation considerations include selection of appropriate enhancers, retention of drug and enhancers on skin, transfer to clothing or other individuals by contact, drug solubility in the medium, possible crystallization of the drug on skin when the applied formulation dries.

Hydrolytic and oxidative stability of the drug in aqueous or hydroalcoholic medium, pH effects, and cosmetic acceptability are some of the other critical issues to be addressed in patchless product formulation. The presentation will also include a discussion of some of the commercial approaches to patchless transdermal product development and their performance in the market.

Intradermal Delivery and the Developing World
Darin Zehrung, Technical Officer, Portfolio Leader, Vaccine Delivery Technologies, PATH

PATH is an international nonprofit organization that creates sustainable, culturally relevant solutions, enabling communities worldwide to break longstanding cycles of poor health. By collaborating with diverse public- and private-sector partners, PATH helps provide appropriate health technologies and vital strategies that change the way people think and act to improve global health and well-being.

For more than 20 years, PATH has worked with immunization technologies for use in low-resource settings. PATH’s Vaccine Delivery Technologies Group takes a multi-disciplinary approach to product development, ensuring that new technologies for vaccine administration are acceptable to users, cost effective, and based on sound and tested science.

PATH is currently working to identify current and future applications for intradermal immunization in developing countries, with a particular focus on alternative delivery devices. Intradermal delivery represents potential benefit to international public health, but must be weighed against operational challenges such as reformulation, vaccine presentation, development of intradermal delivery devices, injection safety and health care worker training requirements.

Refreshment break

Transdermal Drug Delivery Systems: Dermatologic Issues
Dr. Danyi Quan, Xel Pharmaceuticals, Inc.

An important function of the skin is its barrier properties, which has aided the survival of humans in an environment that offers variable temperatures and humidity; challenges to hydration, and the presence of environmental dangers such as chemicals, bacteria, and allergens. Furthermore, the barrier properties of the skin are due to the outer layer of its epidermis, the stratum corneum, which is a rate-limiting impediment to the percutaneous absorption of drugs.

Transdermal drug delivery technology is to overcome the skin barrier to successfully enhance transdermal permeation. Therefore, dermatologic and other skin-related, adverse reactions are the unavoidable disadvantages of transdermal drug delivery systems. These issues can be...
Major obstacles for the application of a transdermal system if scientists do not design it well during the product-development stage. This presentation discusses the dermatologic issues that transdermal drug delivery systems can cause and the possible methods to minimize these adverse reactions.

- Formulation related factors
- Non formulation related factors
- Skin responses to transdermal patch application
- Dermatologic adverse issues

12:00 Luncheon

1:30 Intradermal Delivery of Therapeutic Drugs and Vaccines Using Stainless Steel Microneedles

Ronald J. Pettis, Ph.D., BD Technologies

BD has developed stainless steel microneedles that offer the potential for reliable and effective delivery of a wide range of protein-based drugs and various classes of vaccines. Here, we review the pre-clinical and clinical development of this robust drug delivery platform, highlighting work conducted with influenza vaccine and insulin.

Pre-clinical studies of microneedle-based protein delivery have shown consistent differences in pharmacokinetic uptake and distribution compared to other parenteral routes such as subcutaneous (SC) delivery. These animal trials have shown that in almost all cases microneedle ID delivery results in faster uptake, and increased early-phase bioavailability. This effect has also been demonstrated clinically with insulin in both normal subjects using glycemic clamp conditions and in diabetic subjects receiving standardized meals. The microneedle delivery route enables a more physiologically relevant insulin profile and enhanced pharmacodynamics response of blood glucose control. This effect may have substantial benefit for diabetics for both postprandial control and insulin infusion applications.

Pre-clinical studies with influenza vaccine showed that microneedle-based intradermal (ID) delivery can, in many cases, enable dose-sparing and induce stronger humoral immune responses compared to that achieved by intra-muscular (IM) injection using standard needles. A microneedle-based ID injection system, BD SoluviaTM, was developed for commercial applications. Through clinical trials it was shown that this delivery system is easy to use and enables accurate and reproducible ID injection in humans. Clinical trials with influenza vaccine demonstrated that microneedle-based ID delivery induces increased immune responses compared to IM injection, especially in elderly subject populations. The world's first microneedle product, Intanza®/ID Flu® (sanofi-pasteur) has received regulatory approval in Europe.

Microneedle based ID injection offers unique characteristics that are not readily achieved with other more traditional forms of parenteral delivery. These properties have been shown to offer potential clinical benefit for various vaccine and protein formulations, without necessitating substantial changes in drug formulation. With the availability of approved clinical delivery systems, microneedles are poised to enhance patient therapy and offer unique opportunities across a range of injection therapies.

2:30 Early Stage Technologies of Transdermal Drug Delivery Enhancement

Narasimha Murthy, Assistant Professor of Pharmaceutics
Research Assistant Professor in the Research Institute of Pharmaceutical Sciences, University of Mississippi

Despite there is a lot of research ongoing in the area of physical methods of drug delivery, there is more and more technologies being developed on the other side with an objective of overcoming the limitations of existing technologies. In this direction, some research groups have reported the early stage development data on technologies such as magnetophoresis, electret based techniques, etc.

3:15 Refreshment break

3:30 Pharmacopeial Requirements for Product Performance Testing of Topical and Transdermal Drug Product

Michael Eakins, President, Eakins and Associates, Inc.

Two new USP general chapters have been published for comment on topical and transdermal product quality tests (USP <3> and product performance tests (USP <725>). These chapters will be reviewed as well as other relevant USP chapters and compared with the approach of the EP to these issues.

4:15 Panel Discussion

5:00 End of Conference
About your conference destination:
The Radisson-Plaza Warwick is located in the heart of downtown Philadelphia, and adjacent to beautiful Rittenhouse Square. From the conference venue, you can access many points of interest in Philadelphia including Independence Hall, the Kimmel Center and the Avenue of the Arts and numerous shops, hotels and excellent restaurants!

REGISTRATION INFORMATION

Register for the conference using one of four options:
Online: www.pharmaedresources.com Phone: (217) 355-7322 Fax: (847) 589-0708
Mail: 2810 Robeson Park Drive, Champaign, IL 61822

PLEASE COMPLETE THE FOLLOWING:
FIRST NAME: ____________________________
LAST NAME: ____________________________
TITLE: ________________________________
COMPANY: ______________________________
ADDRESS: ______________________________
ADDRESS: ______________________________
CITY: __________________ STATE: __________
ZIP: _______________ COUNTRY CODE: __________
OFFICE PHONE: __________________________
MOBILE PHONE: __________________________
FAX: __________________
E-MAIL: __________________

Please register me for:
TRANSDERMAL DRUG DELIVERY SYSTEMS:
Examine Recent Developments in Transdermal Drug Delivery
February 24-25, 2011, Radisson Warwick Hotel, Philadelphia, PA

$1,895 USD
REGISTER BY JANUARY 1st AND TAKE $300 OFF

PAYMENT METHOD
CREDIT CARD REGISTRATION:
☐ CREDIT CARD ☐ VISA ☐ MASTERCARD ☐ AMEX
NAME: __
CARD #: ______________________________
EXPIRATION: _____ / ________
SIGNATURE: __________________________
BILLING ADDRESS: __

VENUE INFORMATION:
Dates: February 24-25, 2011
Hotel: Radisson Warwick Hotel
Hotel Address: 1701 Locust Street
Philadelphia, PA 19103
Reservations: (888) 201-1718 US
Hotel Telephone: (215) 735-6000
Fax: (215) 789-6105
Email: rhi_plph@radisson.com

CHECK REGISTRATION:
To pay by check, please provide a purchase order below. Please note that all payments must be received five (5) days prior to the conference to ensure space. Attendees will not be admitted to the conference without full payment.
PURCHASE ORDER #: __________________________________

PLEASE NOTE:
PharmaEd Resources does not offer refunds. However, if you cannot attend after registering, we are happy to apply your registration fee to another PharmaEd Resources event, or transfer your registration to a colleague. Notice of cancellation must be received at least 5 days prior to the event.